14-12-2024 09:10:11 PM Course Code: 314008 #### COMPUTER AIDED DRAWING AND SIMULATION Programme Name/s : Electrical Engineering/ Electrical Power System Programme Code : EE/ EP Semester : Fourth Course Title : COMPUTER AIDED DRAWING AND SIMULATION Course Code : 314008 #### I. RATIONALE It is the need of the industry to draw electrical engineering drawings and use CAD software effectively as per the requirement. In this course, students will practice to interpret drawings, communicate ideas, and turn concepts into practical designs. They gain skills in navigating CAD software and using its tools efficiently to draw electrical drawings. This course is designed in such a way that practical performed in this course will enhance their skills to compete in fast growing electrical industry and understand different circuits by simulation. #### II. INDUSTRY / EMPLOYER EXPECTED OUTCOME Draw electrical drawings using CAD and simulate basic Electrical circuits using simulation software(s). #### III. COURSE LEVEL LEARNING OUTCOMES (COS) Students will be able to achieve & demonstrate the following COs on completion of course based learning - CO1 Comprehend Electrical Drawings. - CO2 Locate various components of CAD software. - CO3 Use relevant CAD Tools and Commands for Electrical Drawings. - CO4 Draw different Electrical Drawings using CAD software. - CO5 Simulate Basic Electrical and Electronic circuits. # IV. TEACHING-LEARNING & ASSESSMENT SCHEME | - 4 | | | / . | L | ear | ning | Sche | me | | | | | A | ssess | ment | Sch | eme | | |) | | |----------------|---------------------------------------|------|----------------------|----|----------------------|-----------|------|-----|---------|-------------------|-----|-----------|-----|-------|------|-----|----------------------|-----|-----|------------|----------------| | Course
Code | Course Title | Abbr | Course
Category/s | C | ctu:
onta
s./W | ct
eek | | NLH | Credits | Paper
Duration | i k | The | ory | | | T | on LL
L
ctical | | | ed on
L | Total
Marks | | ı | 130 | 1 | | CL | TL | LL | | | | Duration | FA- | SA-
TH | To | tal | FA- | -PR | SA- | -PR | SI | Ĺ A | IVIAIKS | | | | | | | | | | | | | Max | Max | Max | Min | Max | Min | Max | Min | Max | Min | | | 314008 | COMPUTER AIDED DRAWING AND SIMULATION | CDS | SEC | - | | 4 | - | 4 | 2 | - | - | , | , | 1 | 25 | 10 | 25@ | 10 | | 7 | 50 | #### COMPUTER AIDED DRAWING AND SIMULATION #### **Total IKS Hrs for Sem.**: 0 Hrs Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination #### Note: - 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester. - 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester. - 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work. - 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks - 5. 1 credit is equivalent to 30 Notional hrs. - 6. * Self learning hours shall not be reflected in the Time Table. - 7. * Self learning includes micro project / assignment / other activities. ### V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT | Sr.No | Theory Learning Outcomes (TLO's)aligned to CO's. | Learning content mapped with Theory
Learning Outcomes (TLO's) and CO's. | Suggested
Learning
Pedagogies. | |-------|---|--|---| | 1 | TLO 1.1 Sketch the electrical symbols as per requirement in electrical drawings. TLO 1.2 Interpret given electrical power/control wiring diagram. TLO 1.3 Identify types of electrical panel. TLO 1.4 Sketch GA Diagram of Electrical control panel (Assume suitable dimensions). | Unit - I Electrical Drawings. 1.1 Symbols: Electrical and Electronic as per SP 30: 2023 Part 1, section 3. 1.2 Types of electrical drawings (a) Power wiring diagram (single line diagram (SLD) or Multiline diagram) (b) Control wiring diagram (Schematic diagram) (c) Block diagrams (d) Pictorial diagrams. 1.3 Types of Electrical panels (a) MCC (Motor control center) Panel (b) PCC (Power control center) panel (c) APFC (Automatic Power Factor Controller) Panel (d) PLC (Programmable logic controller) Panel. 1.4 General Arrangement (GA) diagram of Electrical control panel. | Hands-on
Presentations
Lecture Using
Chalk-Board | | 2 | TLO 2.1 Identify the function of the given components of CAD classic screen. TLO 2.2 Identify the given components of CAD screen. TLO 2.3 Identify the given toolbar and commands. | Unit - II Computer Aided Design (CAD) Introduction. 2.1 Components of CAD classic screen. 2.2 Menu bar and status bar. 2.3 Open and Save file. 2.4 CAD Toolbars. 2.5 Command Box. 2.6 Zoom in and Zoom out. | Hands-on
Presentations
Demonstration | 14-12-2024 09:10:11 PM Course Code: 314008 # **COMPUTER AIDED DRAWING AND SIMULATION** | Sr.No | Theory Learning Outcomes (TLO's)aligned to CO's. | Learning content mapped with Theory
Learning Outcomes (TLO's) and CO's. | Suggested
Learning
Pedagogies. | |-------|---|--|--| | 3 | TLO 3.1 Use the coordinate methods and practice basic commands. TLO 3.2 Practice Draw, Modify and Annotation toolbar commands. TLO 3.3 Practice Important CAD Modes. | Unit - III CAD Tools and Commands. 3.1 Coordinate Method: Absolute, Relative, Polar. Basic commands: Limits, Units. 3.2 Draw Toolbar: Line, Polyline, Circle, Arc, Rectangle, Ellipse, Polygon, Hatch. 3.3 Modify Toolbar: Move, Rotate, Trim, Erase, Copy, Cut, Mirror, Fillet, Chamfer, Offset, Explode, Strech, Scale. 3.4 Annotation Toolbar: Multiline Text, Single Line Test, Linear dimension, Aligned dimension, Angular Dimension, Arc Length Dimension, Radius Dimension, Diameter Dimension 3.5 Important CAD Modes: Grid, Ortho, Snap, Polar Tracking, Object Snap Tracking. | Hands-on
Demonstration
Presentations | | 4 | TLO 4.1 Sketch the power wiring diagram, control wiring diagram and GA Diagram of Electrical control panel using CAD TLO 4.2 Sketch the Single line diagram (SLD) of the 11 kV/433 V distribution substation using CAD TLO 4.3 Sketch the Single line diagram (SLD) of residential/commercial unit using CAD TLO 4.4 Sketch the Single line diagram (SLD) of any industrial plant using CAD | Unit - IV Use of CAD in Real World Electrical Engineering Drawings. 4.1 Applications of electrical CAD software to: (a)Draw power wiring diagram of electrical control panel. (b)Draw control wiring diagram of electrical control panel. (c)Draw GA diagram of electrical control panel. 4.2 Applications of electrical CAD software to Single line diagram (SLD) of the 11 kV/433 V distribution substation. 4.3 Prepare Single line diagram (SLD) of residential/commercial unit using CAD. 4.4 Draw the Single line diagram (SLD) of any industrial electrical installation using CAD. | Hands-on
Demonstration
Presentations | | 5 | TLO 5.1 Select and use softwares for Electrical and electronic circuit simulations. TLO 5.2 Build, Simulate and Test Basic electric circuits. TLO 5.3 Build, Simulate and Test Basic electronic circuits. TLO 5.4 Measure various electrical parameters and Generate or plot relevant Waveforms/Graphs. TLO 5.5 Develop P.C.B. layout for a given electrical circuit using software. | Unit - V Simulation of Electrical and Electronic Circuits. 5.1 Voltage, current, power across (a)Series R-L circuit (b)Series R-C circuit (c)Series R-L-C circuit. 5.2 Rectifier circuit, KVL and KCL simulation. 5.3 Triac Lamp Dimmer Circuit simulation. 5.4 Basic Logic Gate and adder circuit simulation. 5.5 Printed Circuit Board (PCB) preparation basic information. | Hands-on
Demonstration
Presentations | # VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES. | Practical / Tutorial / Laboratory
Learning Outcome (LLO) | | Laboratory Experiment / Practical Titles /
Tutorial Titles | Number of hrs. | Relevant
COs | |---|---|--|----------------|-----------------| | LLO 1.1 Draw symbols of different electrical and electronic components using drawing instruments. | 1 | *Symbols of Electrical and Electronic Components as per SP 30: 2011(NEC 2011) part 1, section 3 or new equivalent IS on sketch book. | 2 | CO1 | | LLO 2.1 Draw Power and control wiring diagram for DOL starter. | 2 | *Power and Control wiring diagram of DOL Starter on sketch book. | 2 | CO1 | # COMPUTER AIDED DRAWING AND SIMULATION | Practical / Tutorial / Laboratory
Learning Outcome (LLO) | Sr
No | Laboratory Experiment / Practical Titles / Tutorial Titles | | Relevant
COs | |--|---|--|---|-------------------| | LLO 3.1 Draw Power and control wiring diagram for Star Delta starter. | 3 | *Power and Control wiring diagram of Star Delta
Starter on sketch book. | 2 | CO1 | | LLO 4.1 Draw General Arrangement (GA) Diagram for DOL/Star delta starter panel or any other electrical panel. | 4 | General Arrangement Diagram for Electrical Panel on sketch book (Assume suitable dimensions). | 2 | CO1 | | LLO 5.1 Install CAD software.
LLO 5.2 Create new drawing.
LLO 5.3 Locate components of
CAD Classic Screen (CAD screen
layout, Drawing area, Menu and
Toolbars, Status bar). | 5 | *Different components of CAD classic screen. | 2 | CO2 | | LLO 6.1 Create and Save drawing.
LLO 6.2 Set the drawing Limits
and Units of the file.
LLO 6.3 Perform Zoom in and
Zoom out functionality. | 6 | *CAD file operations and Limits & Units of Drawing. | 2 | CO2 | | LLO 7.1 Use Draw Toolbar of CAD for drawing basic geometrical shapes. | for drawing basic 7 commands (Line, Polyline, Circle, Arc, Rectangle, | | 2 | CO2
CO3 | | LLO 8.1 Use Modify Toolbar of CAD for modifying or editing CAD drawing. | 8 | Modifying or editing basic geometrical shapes using modify commands (Move, Rotate, Trim, Erase, Copy, Cut, Mirror, Fillet, Chamfer, Offset, Explode, Stretch, Scale). | 2 | CO2
CO3 | | LLO 9.1 Use Annotation Toolbar of CAD for writing Text and measuring dimensions. | 9 | *Annotation Toolbar commands (Multiline Text,
Single Line Test, Linear dimension, Aligned
dimension, Angular Dimension, Arc Length
Dimension, Radius Dimension, Diameter
Dimension). | 2 | CO2
CO3 | | LLO 10.1 Use Important CAD modes for drawing: Grid, Ortho, Snap, Polar Tracking, Object Snap Tracking. | 10 | *Important CAD Modes for drawing: Grid, Ortho, Snap, Polar Tracking, Object Snap Tracking. | 2 | CO2
CO3 | | LLO 11.1 Draw symbols of different electrical and electronic components using CAD. | 11 | *Symbols of Electrical and Electronic Components as per SP 30: 2011(NEC 2011) part 1, section 3 or new equivalent IS using CAD. | 2 | CO1
CO2
CO3 | | LLO 12.1 Draw Power and control wiring diagram for DOL starter using CAD. | 12 | *Power and Control wiring diagram of DOL Starter using CAD. | | CO2
CO3 | | LLO 13.1 Draw Power and control wiring diagram for Star Delta starter using CAD. | 13 | *Power and Control wiring diagram of Star Delta Starter using CAD. | 2 | CO2
CO3 | | LLO 14.1 Draw General Arrangement (GA) Diagram for DOL/Star delta starter panel or any other electrical panel using CAD. | 14 | *General Arrangement Diagram for Electrical Panel (Assume suitable dimensions) using CAD. | 2 | CO2
CO3 | | LLO 15.1 Draw Single Line
Diagram (SLD) of the 11kV/433V
distribution substation using CAD
software. | 15 | *Single Line Diagram (SLD) of the 11kV/433V distribution substation using CAD. | 2 | CO2
CO3
CO4 | # COMPUTER AIDED DRAWING AND SIMULATION | Practical / Tutorial / Laboratory
Learning Outcome (LLO) | Sr
No | Laboratory Experiment / Practical Titles /
Tutorial Titles | Number of hrs. | Relevant
COs | |---|----------|---|----------------|-------------------| | LLO 16.1 Draw Single Line Diagram (SLD) of any Industrial Electrical Installation using CAD Software. LLO 16.2 Plot and print drawings to produce hard copies or digital outputs. | 16 | *Single Line Diagram (SLD) of any Industrial Electrical Installation using CAD Part I. | | CO2
CO3
CO4 | | LLO 17.1 Draw Single Line Diagram (SLD) of any Industrial Electrical Installation using CAD Software. LLO 17.2 Plot and print drawings to produce hard copies or digital outputs. | 17 | *Single Line Diagram (SLD) of any Industrial Electrical Installation using CAD Part II. | 2 | CO2
CO3
CO4 | | LLO 18.1 Install simulation software. LLO 18.2 Create new simulation worksheet. LLO 18.3 Use different tools available in software. | 18 | *Use of simulation software. | 2 | CO5 | | LLO 19.1 Build ohms law, series & parallel circuit using simulation software. LLO 19.2 Measure different electrical parameters using software tools. | 19 | *Simulation for verification of Ohm's law and series & parallel resistances in circuit. | 2 | CO5 | | LLO 20.1 Build KCL and KVL Circuit using software. LLO 20.2 Measure electrical parameters using software. | 20 | *Simulation of Kirchoff's Current Law and Kirchoff's Voltage Law. | 2 | CO5 | | LLO 21.1 Build R-L series circuit using software. LLO 21.2 Measure electrical parameters using software. LLO 21.3 Observe Relevant waveforms across each components. | 21 | *Simulation of R-L series circuit. | 2 | CO5 | | LLO 22.1 Build R-C series circuit using software. LLO 22.2 Measure electrical parameters using software. LLO 22.3 Observe Relevant waveforms across each components. | 22 | Simulation of R-C series circuit. | 2 | CO5 | | LLO 23.1 Build PN junction diode circuit using software. LLO 23.2 Observe Diode characteristics. | 23 | Simulation of VI Characteristics of diode. | 2 | CO5 | #### COMPUTER AIDED DRAWING AND SIMULATION | Practical / Tutorial / Laboratory
Learning Outcome (LLO) | | Laboratory Experiment / Practical Titles /
Tutorial Titles | Number of hrs. | Relevant
COs | |--|-------|--|----------------|-----------------| | LLO 24.1 Build half-wave rectifier circuit using software. LLO 24.2 Measure different parameters using software. LLO 24.3 Develop P.C.B. layout for a given electrical circuit using software. | No 24 | *Simulation of single phase half-wave rectifier circuit. | 2 | CO5 | | LLO 25.1 Build full-wave rectifier circuit using software. LLO 25.2 Measure different parameters using software. LLO 25.3 Develop P.C.B. layout for a given electrical circuit using software. | 25 | Simulation of single phase full-wave rectifier circuit. | 2 | CO5 | | LLO 26.1 Build basic logic gates circuit using software. LLO 26.2 Observe different parameters using software. | 26 | *Simulation of Basic Logic Gates. | 2 | CO5 | | LLO 27.1 Build Triac Lamp Dimmer circuit using software. LLO 27.2 Observe different parameters using software. | 27 | *Simulation of Triac Lamp Dimmer circuit. | 2 | CO5 | | LLO 28.1 Build Half and Full Adder Logic circuit using software. LLO 28.2 Observe different parameters using software. LLO 28.3 Develop P.C.B. layout for a given electrical circuit using software. | 28 | Simulation of Half and Full Adder Logic circuit. | 2 | CO5 | | LLO 29.1 Build Half and Full Subtractor circuit using software. LLO 29.2 Observe different parameters using software. | 29 | Simulation of Half and Full Subtractor circuit. | 2 | CO5 | | LLO 30.1 Build any circuit using software. LLO 30.2 Develop P.C.B. layout for a given electrical circuit using software. | 30 | P.C.B. Layout Preparation for electrical circuit using software. | 2 | CO5 | ### Note: Out of above suggestive LLOs - - '*' Marked Practicals (LLOs) Are mandatory. - Minimum 80% of above list of lab experiment are to be performed. - Judicial mix of LLOs are to be performed to achieve desired outcomes. # VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING) #### **Assignment** - Simulate stair case wiring circuit - Simulate one switch one bulb house wiring diagram circuit - Simulate Op-Amp integrator circuit design - Simulate & Measure average power and power factor with a wattmeter #### COMPUTER AIDED DRAWING AND SIMULATION - Simulate series and parallel RLC circuit - Study EPLAN software #### Note: - Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way. - The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills. - If a microproject is assigned, it is expected to be completed as a group activity. - SLA marks shall be awarded as per the continuous assessment record. - For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences. - If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations. #### VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED | Sr.No | Equipment Name with Broad Specifications | Relevant LLO Number | |-------|---|--| | 1 | A4 Sketch Book Drawing Material | 1,2,3,4 | | 2 | Simulation Software List 1) Any Open-Source Software like Scilab. 2) Multisim Educational Version 14.3 3) PSIM 11.1 | 18,19,20,21,22,23,24,25,26,27,28,29,30 | | 3 | CAD Software List 1) Any Open-Source Computer Aided Design (CAD) Software. 2) LibreCAD. 3) AutoCAD Electrical Student Version. | 5,6,7,8,9,10,11,12,13,14,15,16,17 | | 4 | Computer Sysytem Operating System: 64-bit Windows 8 or higher Processor: 2.5–2.9 Ghz processor / Recommended: 3+ Ghz processor RAM: 8 GB as a minimum, with 16GB being recommended GPU: 1GB of VRAM as a minimum with DirectX 11 support; Recommended: 4 GB of VRAM with DirectX 12 support Storage: 10 GB. | All | # IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table): NOT APPLICABLE #### X. ASSESSMENT METHODOLOGIES/TOOLS ### Formative assessment (Assessment for Learning) - Teacher should prepare rubrics for Formative assessment - Each Practical will be assessed for 25 Marks and average of all marks obtained will be considered. #### **Summative Assessment (Assessment of Learning)** - End Semester assessment of 25 marks for laboratory learning. - Teacher should prepare rubrics for Summative Assessment. ### XI. SUGGESTED COS - POS MATRIX FORM #### **COMPUTER AIDED DRAWING AND SIMULATION** | COMPUT | ER AIDED | DRAWI | NG AND SIM | ULATION | | | Course | Code | : 3140 | 800 | |--------|--|-----------------------------|--|---------------|--|---|----------------------------------|------|--------|----------------| | | Programme Outcomes (POs) | | | | | | | | | me
c
es* | | (COs) | PO-1 Basic
and
Discipline
Specific
Knowledge | PO-2
Problem
Analysis | PO-3
Design/
Development
of Solutions | Linginicaling | PO-5 Engineering Practices for Society, Sustainability and Environment | Management | PO-7
Life
Long
Learning | 1 | PSO-2 | PSO- | | CO1 | 3 | 1 | 1 | 3 | 2 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 2 | | | | | CO2 | 3 | · | ·(13)- 3 | 3 | | | 2 | | | | | CO3 | 3 | | 2 | 3 | 1 1 | | 2 | | | | | CO4 | 3 | 1 | 3 | 3 | | 2 | 2 | | | | | CO5 | 3 | 1 | 3 | 3 | 1 | 2 | 2 | | | | Legends:- High:03, Medium:02, Low:01, No Mapping: - # XII. SUGGESTED LEARNING MATERIALS / BOOKS | Sr.No | Author | Title | Publisher with ISBN Number | |-------|------------------------|---|---| | 1 | Cornel Barbu | Electrician's Book how to Read Electrical Drawings | Lulu.com, ISBN-13: 9781435713208 | | 2 | Prof. Sham
Tickoo | AutoCAD Electrical 2021: A Tutorial Approach, 2nd Edition | CADCIM Technologies, ISBN-13
9781640571006, 1640571000 | | 3 | John Reeder,
Reeder | Using Multisim 9 Troubleshooting DC/AC Circuits | Delmar Cengage Learning, ISBN-13
9781111322137, 1111322139 | # XIII. LEARNING WEBSITES & PORTALS | Sr.No | Link / Portal | Description | |-------|---|--| | 1 | https://www.kicad.org/ | Kicad : This link download Open Source
PCB Design Kicad Software | | 2 | https://www.autodesk.com/education/students | AutoCAD : Register and get free student version of LATEST AutoCAD software | | 3 | https://law.resource.org/pub/in/bis/S05/is.sp.30.2011.pdf | This link downloads IS SP:30 2011 (NEC 2011) | | 4 | https://powersimtech.com/products/ | PSIM: This link downloads PSIM software demo version | | 5 | https://powersimtech.com/wp-content/uploads/2021/01/PSIM-Use r-Manual.pdf | This link downloads PSIM software user Manual | | 6 | https://scilab.in/DownloadScilab | Scilab : This link downloads Scilab software | | 7 | https://librecad.org/ | LibreCAD : This link downloads Open
Source LibreCAD software | | 8 | https://www.falstad.com/circuit/ | Falstad: This is an electronics circuit simulator applet | | 9 | https://www.ni.com/en/support/downloads/software-products/do
wnload.multisim.html#452133 | NI Multisim: This is an electrical and electronics circuit simulator | | 10 | https://www.youtube.com/watch?v=GH-JFXbOcZg&t=71s | Hartley Oscillator circuit simulation on Multisim software | ^{*}PSOs are to be formulated at institute level 14-12-2024 09:10:11 PM Course Code: 314008 # **COMPUTER AIDED DRAWING AND SIMULATION** | Sr.No | Link / Portal | Description | |-------|---|---| | 11 | https://www.youtube.com/watch?v=mzglU-tMgXY | Simulating halfwave and full wave rectifier circuit in multisim | | 12 | https://www.youtube.com/watch?v=szfgbN0GD5A | AutoCAD practice exercise | | 13 | https://www.youtube.com/watch?v=_2d_Tb9bzsQ&t=10s | Series RLC Circuit Simulation using Multisim | | 14 | https://www.youtube.com/watch?v=UKpIGwto47U | Triac Lamp Dimmer Circuit | | 15 | https://youtu.be/9m8ABCSKTec?si=Kuf6ryURVs9hpK49 | VI Characteristics of PN junction diode 1N4007 | # Note: • Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students MSBTE Approval Dt. 21/11/2024 Semester - 4, K Scheme