Program Name	: Electrical Engineering Program Group
Program Code	: EE/EP/EU
Semester	: Sixth
Course Title	: Emerging Trends in Electrical Engineering
Course Code	: 22628

1. RATIONALE

Every technological area is developing at an exponential rate. New applications are coming up and it's mandatory for all technologists to be well versed in these areas to survive and provide satisfactory and quality services to the society in respect of such technologies. This course aims to prepare the diploma graduates to be conversant with such emerging trends for staying in the race. The main areas in which such developments are in, encompassmart systems, intelligent motor controls, tariff and digitization beyond automation. The course gives a decent introduction of these areas and helps the students to be in a state of preparedness.

2. COMPETENCY

Aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use the trending practices in electrical engineering fields.

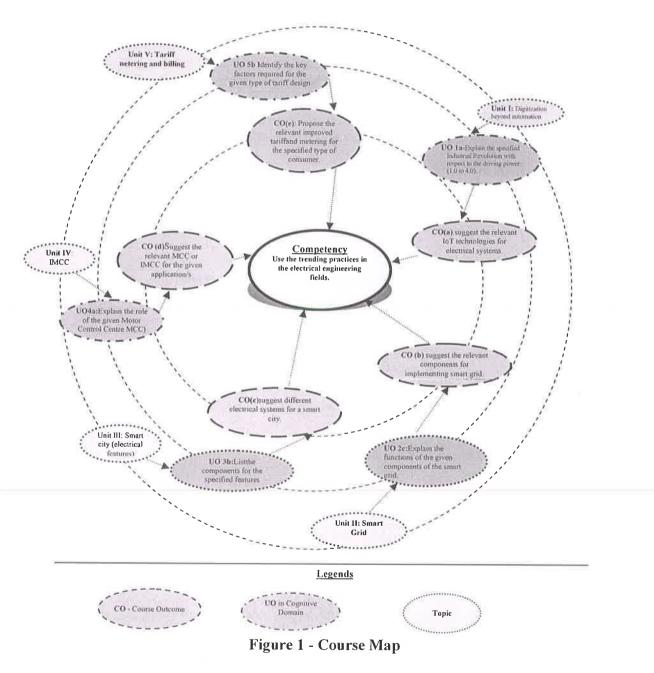
3. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned competency:

- a) Suggest the relevant IoT technologies for electrical systems.
- b) Suggest the relevant components for implementing a smart grid.
- c) Suggest different electrical systems for a smart city.
- d) Suggest the relevant MCC or IMCC for the given application/s.
- e) Propose the relevant improved tariff and metering for the specified type of consumer.

4. TEACHING AND EXAMINATION SCHEME

	achi chen	<u> </u>	Credit	Examination Scheme						Grand												
	$(\mathbf{L} + \mathbf{T} + \mathbf{P})$				T		-			(L+T+P)		Theory Marks ESE PA Total			tal	Practical Mark				(R		Total
		P		Paper Hrs.	Max	Min	Max	A Min	Max	Min	Max	Min	Max	Min	Max	Min						
3	×	-	3	90 Min	70*#	28	30*	00	100	40		н.	-	-	-	-	100					


(*#): Online examination of 90 minutes duration.0

(*): Under the theory PA, Out of 30 marks, 10 marks are for micro-project assessment to facilitate integration of COs and the remaining 20 marks is the average of 2 tests (of MCQ type) to be conducted during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, ESE – End Semester Examination; PA - Progressive Assessment#-External Assessment

5. **COURSE MAP** (with sample COs, UOs, ADOs and topics)

This course map illustrates an overview of the flow and linkages of the topics at various levels of outcomes (details in subsequent sections) to be attained by the student by the end of the course, in all domains of learning in terms of the industry/employer identified competency depicted at the centre of this map.

6. SUGGESTED PRACTICALS/ EXERCISES: Not Applicable

7. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED: Not Applicable

8. UNDER-PINNING THEORY COMPONENTS

The following topicsare to betaught and assessed in order to develop the sample UOs given below for achieving the COs to attain the identified competency. More UOs could be added.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
TI	(in cognitive domain)	1.1 Industrial Develutions
Unit – I Digitization beyond automation	 1a. Explain the specified Industrial Revolution with respect to the driving power. (1.0 to 4.0). 1b. Compare the specified Industrial revolutions with reference to the given points. 1c. Explain the importance of the Industrial Revolution 4.0 with respect to the specified component/s. 1d. Explain the principle of IoT used in the given application. 1e. Explain the IoT used in the given electrical application. 1f. Explain the IoT approach used in the given application for the power distribution system. 	 1.1 Industrial Revolutions: Versions 1.0, 2.0, 3.0 and 4.0; the driving energies/powers for these revolutions. 1.2 Components of Industrial Revolution 4.0: CPS (Cyber Physical Systems), IoT (Internet of Things), Cloud Computing and Cloud Manufacturing. 1.3 IoT principle and features. 1.4 IoT application areas in electrical systems: building automation SCADA, Smart metering, Illumination systems (public lighting). 1.5 IoT initiatives in power distribution systems: Mobile Apps, Geo coordinates of the network as well as consumer premises, Various digital service platforms for consumers.
Unit- II Smart Grid	 2a. Explain the need for the given smart grid. 2b. Draw a labeled layout for the specified smart grid. 2c. Explain the functions of the given components of the smart grid. 2d. Identify the barriers for the given smart grid. 2e. Identify the advantages for the given smart grid. 2f. List the smart grid projects in the Indian grid. 2g. Explain the need for the given micro grid. 	Resources :Needand formation of micro grid, Distributed Generation Systems and Distributed Generation

Course Code: 22628

8 - 8

٠

*

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(in cognitive domain)	
	2h. Explain the general layout of	
	the micro grid.	
	2i. Explain the working of the	
	given micro grid.	
	2j. Explain the significance of the	1. (F)
	Distributed Generation	
	Systems in the given power	
	scenario.	
	2k. Explain the given Distributed	
	Generation Technology.	
	21. Explain the functions of the	
	given components of the smart	
	substation.	
	2m. Compare the smart substation	
	and conventional substation	
	for the given criteria.	
TI		
Unit–III Smort City	3a. Explain the relevant features	3.1 Smart City: Features, components,
Smart City (Electrical	of the specified smart city.	Objectives and challenges of smart
(Electrical Features)	3b. List the components for the	Cities in India.
r catures)	specified features.	3.2 E-car:Role of Electric Vehicles in
	3c. Explain the importance of e-	energy transition, basics of electric
	vehicles in the given scenario (environment and energy).	car, types of electric cars, working
	3d. Explain the working of the	principle, charging stations. Fuel
	given type of e-car.	cell for e-cars, types, features, limitations.
	3e. Explain with sketch (block	3.3 SmartHome: Features and
	schematic) the working of the	Components.Illumination and smart
	given type charging station.	appliance control principles (block
	3f. Identify the features of the	diagram/s).
	given fuel cell used in e-cars.	ulagrani/s).
	3g. Identify the barriers for the	
	adoption of e-cars in the	
	specified scenario.	
	3h. Identify the components	
	required for the specified	
	features in the given smart	
	home.	
	3i. Identify the illumination and	
	its control components	
	/devices for a specified room	
	of a given smart home.	
	3 j. Explain with schematic	
	sketch the working principle	

•

 $\hat{\mathbf{x}}$

Course Code: 22628

61

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(in cognitive domain)	
	smart home.	
Unit– IV	4a. Explain the role of the given	4.1 General/traditional
Intelligent	Motor Control Centre MCC).	(conventional) Motor control
Motor Control	4b. List the devices and	center:
Centers	components used in (with	Role in Motor protection and
	functions) the given MCC.	motor management. Typical block
	4c. Explain the roles of the	diagram and general architecture or
	components of the given	arrangement. Components:
	motor control centre (MCC).	symbols and functions. Traditional
	4d. Explain the need for the	MCCs: advantages and
	given type of MCC.	disadvantages.
	4e. Explain the roles and	4.2 Intelligent or Smart MCCs:
	functions of the devices	Need and the requirements that
	/components of the specified	lead to have IMCCs. Role as
	IMCC.	compared to traditional MCCs.
	4f. Prepare the outline with	Functional Block diagram/s with
	components of the IMCC	general arrangements.
	suitable for a given	4.3 Devices and Components typical
	application.	to IMCCs: Intelligent relays,
	4g. List the advantages of given	fuses, control devices, effective
	type of MCC.	security and dedicated software.
	4h. List the disadvantages of	4.4 Basic components of intelligent
	•	systems: Control by
	given type of MCC.	microprocessor/microcontroller-
	4i. List the advantages of given	
	type of IMCC.	based systems;
	4j. Suggest an IMCC for a given	networking/technology replaces
	set of applications.	hard wiring and enhanced
		diagnostic/protective functionality.
		4.5 Selection of MCC: intelligent and
		conventional types for typical
		applications.
Unit– V	5.a Describe terms related to	5.1Tariff:Power Purchase, Power
Tariff,	tariff economics.	Purchase Agreements (PPA),
Metering and	5.b Identify the key factors	Power purchase cost.
Billing	required for the given type of	5.1.1Tariff Design:Key factors for
	tariff design.	Tariff Design, Major Components
	5.c Identify the components for	of an Electricity Bill, various
	the given type of consumer's	slabs in billing, electricity duty,
	electricity bill.	tax on electricity and Cross
	5.d Compare Average Billing	subsidy.
	Rate (ABR), Aggregate	5.1.2Special tariffs: Average Billing
	Revenue Requirement	Rate (ABR), Aggregate Revenue
	(ARR).	Requirement (ARR), Availability
	5.e Explain the suitability of	based Tariff (ABT). Time of Day
	ABT for the given type of	Tariff (ToD),Recent ToD structure
	The first the Birten type of	

Course Code: 22628

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(in cognitive domain)	
	consumer.5.f Suggest with justification the applicable type of tariff for the given type of consumer in the present-day scenario.	5.1.3kVAhtariff: kVAhbilling method for HT and LT Consumers, kVAh Metering methodology, kVAh based Billing calculation,
	5.g Explain the working principal of kVAh meter.	5.2 Metering and Bill Management: Working of Net metering and Gross
	5.h Determine the electricity bill for the given type of consumer by kVAh billing methodology.	metering, MERC rules for Net- metering bill (Regulations 2015), Application of Net Metering for integration of micro-generators with
	5.i Differentiate between Net metering and Gross metering.	grid system. Recent Meter Reading techniques-MRI/AMR reading.
	5.j List out the relevant MERC rules for Net-metering billing.	
	5.k Explain with schematic diagram the use of Net- metering principle for integration of micro- generators with grid system.	
	5.1 Explain with schematic diagram MRI/AMR reading	
	techniques for the given consumer.	

Note: To attain the COs and competency, above listed UOs need to be undertaken to achieve the 'Application Level' and above of Bloom's 'Cognitive Domain Taxonomy'.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit No.		Teaching	Distribution of Theory Marks				
	Unit Title	Hours	R	U	A	Total	
			Level	Level	Level	Marks	
I	Digitization Beyond Automation	08	04	02	02	08	
11	Smart Grid	08	06	04	02	12	
III	Smart City (Electrical Features)	08	08	06	02	16	
IV	Intelligent Motor Control Centers	12	04	06	08	18	
V	Tariff, Metering and Billing	12	04	08	04	16	
	Total	48	26	26	18	70	

Legends: R=Remember, U=Understand, A=Apply and above (Bloom's Revised taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and assess students with respect to attainment of UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages (one activity by each group), also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Perform general survey regarding the recent electrical technologies.
- b. Prepare a power point presentation on IoT applications.
- c. Perform Group discussion on new electricity tariff approaches.
- d. Prepare a visit report on IMCC.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a. Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b. 'L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c. About *15-20% of the topics/sub-topics* which is relatively simpler or descriptive in nature is to be given to the students for *self-directed learning* and assess the development of the COs through classroom presentations (see implementation guideline for details).
- d. With respect to item No.10, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- e. Guide student(s) in undertaking micro-projects.
- f. Show video demonstration on safety precautions.
- g. Demonstrate the actions and care to be taken.
- h. Arrange a visit to.
- i. Arrange expert lecture of industry person.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the year. In the first two years, the micro-project are group-based. However, in the third year, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs as applicable. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16 (sixteen) student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty:

- a. Prepare a report on existing automation in an industry and suggest improvements.
- b. Prepare a reporton Smart Grid.
- c. Prepare a report on any four Electrical Applications in Smart cities.
- d. Present a power point presentation on various IMCCs.
- e. Prepare a report on the procedure of meter reading by MRI and AMR techniques.
- f. Conduct a survey and prepare a report on the IMCCs in one industry.
- g. Prepare a report on mobile apps used for energy billing procedures.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication
1	Fundamentals of Smart Grid Technology	Bharat Modi, AnuPrakash, Yogesh Kumar	S.K. Kataria& Sons; 2015 EditionISBN-10: 9350144859, 13: 978-9350144855
2	Smart Grid: Technology and Applications	JanakaEkanayake, Kithsiri Liyanage et al,	Wiley, 2015 Edition ISBN-10: 9788126557356, 13: 978-8126557356
3	Sustainable Smart Cities in India: Challenges and Future Perspectives	Sharma, Poonam, Rajput, Swati	Springer, ISBN 978-3-319-47145-7
4	Control of Electrical Machines	S K Bhattacharya	New Age International ISBN 8122409970, 9788122409970
5	Handbook of Electrical Motor Control Systems	U. S. Eshwar	Tata McGraw-Hill Education ISBN 0074601113, 9780074601112
6	Applied Intelligent Control of Induction motor Drives	Keli Shi and Tze Fun Chan	Wiley ISBN 10:0470825561, 13:978- 0470825563
7	Art of Reading Electricity Bill	Mr. YogendraTalware	Strom EnergiePvt. Ltd. Pune. (stromenergie.pune@gmail.com)

14. SUGGESTED SOFTWARE/LEARNING WEBSITES

- a. http://www.slideshare.net.in (search with relevant key words)
- b. www.youtube.com (search with relevant key words)
- c. https://en.m.wikipedia.org/wiki/Technological_revolution#Potential_future_technolo gical_revolutions (general introduction to the new industrial revolution)
- d. https://www.plm.automation.siemens.com/global/en/our-story/glossary/industry-4-0/29278 (Industrial revolution 4.0)

- e. https://www.industry.siemens.com/topics/global/en/digitalenterprisesuite/Documents/PDF/PLMportal_Industrie-40-Internet-revolutionizes-theeconomy.pdf (Industrial revolution 4.0)
- f. https://www.trendmicro.com/vinfo/us/security/definition/industrial-internet-of-thingsiiot (Internet of things)
- g. https://www.leverege.com/blogpost/difference-between-iot-and-iiot
- h. https://www.computradetech.com/blog/iot-vs-iiot/
- i. https://www.guora.com/Who-coined-the-term-internet-of-things
- j. https://iot-analytics.com/the-leading-industry-4-0-companies-2019/
- k. http://www.mercindia.org.in/pdf/Order%2058%2042/Order-195%20of%202017-12092018.pdf (MERC order on metering)

