Course Code: 315367 #### PRODUCT DESIGN AND DEVELOPMENT Programme Name/s : Mechanical Engineering/ Mechatronics/ Production Engineering Programme Code : ME/ MK/ PG Semester : Fifth Course Title : PRODUCT DESIGN AND DEVELOPMENT Course Code : 315367 ## I. RATIONALE Design and development are two key elements necessary to create any product. From start to finish, each phase of the product's lifecycle needs careful coordination between these two disciplines for a successful outcome. Each organization should come with innovative ideas to bring up a new product, to maintain a top position in the market. Product design and development is a complete cycle to launch of new industrial products i.e from conceptualization to product realization. #### II. INDUSTRY / EMPLOYER EXPECTED OUTCOME Use principles of product design and development for launching new products in the market. # III. COURSE LEVEL LEARNING OUTCOMES (COS) Students will be able to achieve & demonstrate the following COs on completion of course based learning - CO1 Apply principles to develop new small industrial products according to customer's requirement for launching. - CO2 Use aesthetics and ergonomics principles for developing new products - CO3 Apply DFM principles for development of new product - CO4 Apply principles of QFD for Quality of new product - CO5 Use relevant rapid prototyping methods for development of new product along-with IPR process. ## IV. TEACHING-LEARNING & ASSESSMENT SCHEME | | | | | L | ear | ning | g Sche | eme | | V<br>H | | | , A | ssessi | ment | Sch | eme | | | | | |----------------|--------------------------------------|------|----------------------|----|---------------------|------|------------|-----|---------|-------------------|-----------|-----------|-----|--------|------|-----|--------------------|-----|------------|-----|----------------| | Course<br>Code | Course Title | Abbr | Course<br>Category/s | Co | ctu<br>onta<br>s./W | act | SLH | NLH | Credits | Paper<br>Duration | 1 | The | ory | | | T | n LL<br>L<br>tical | & | Base<br>Sl | L | Total<br>Marks | | | | | | CL | TL | | | | | | FA-<br>TH | SA-<br>TH | То | tal | FA- | PR | SA- | PR | SL | | IVIAI KS | | | | | | | | | | | | | Max | Max | Max | Min | Max | Min | Max | Min | Max | Min | | | 315367 | PRODUCT<br>DESIGN AND<br>DEVELOPMENT | PDD | DSE | 4 | 1 - 4 | 2 | , -<br>, - | 6 | 2 | 3 | 30 | 70 | 100 | 40 | 25 | 10 | 25# | 10 | - | - 1 | 150 | **Total IKS Hrs for Sem.:** 0 Hrs Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment Legends: @ Internal Assessment, # External Assessment, \*# On Line Examination , @\$ Internal Online Examination Note: - 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester. - 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester. - 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work. - 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.\* 10 Weeks - 5. 1 credit is equivalent to 30 Notional hrs. - 6. \* Self learning hours shall not be reflected in the Time Table. - 7. \* Self learning includes micro project / assignment / other activities. Course Code: 315367 # PRODUCT DESIGN AND DEVELOPMENT # V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT | Sr.No | Theory Learning Outcomes (TLO's)aligned to CO's. | Learning content mapped with Theory<br>Learning Outcomes (TLO's) and CO's. | Suggested<br>Learning<br>Pedagogies. | |-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------| | 1 | TLO 1.1 Explain the criteria of customer's need identification for designing new product. TLO 1.2 Explain principles of product design TLO 1.3 Explain product development process. TLO 1.4 State concept of product development TLO 1.5 Explain Seven step method for testing of product concept with example TLO 1.6 Explain process of implementing customer need for designing new product | Unit - I Product Development 1.1 Characteristics of successful product development, Customer need identification 1.2 Definition of product design, principles of good product design, Design by evolution, design by innovation 1.3 Product development process, Phases of process development. flow chart of product development. Tyco product development process 1.4 Concept development- different phases of concept development process, five step concept generation method, Concept classification tree, Concept combination table 1.5 Concept selection- Concept screening, Concept scoring, Seven step method for testing of product concept 1.6 Identification of customer need, Data collection from customer, organize collected data, Establishing relative importance of customer need for designing product with example | Lecture using media Lecture using Chalk-Board | | 2 | TLO 2.1 Define product architecture TLO 2.2 Classify Modularity TLO 2.3 List different design considerations for machine controls using ergonomics principle. TLO 2.4 Apply relevant aesthetics and ergonomics principles in given situation. TLO 2.5 List different aspects of aesthetics in product design | Unit - II Product Architecture 2.1 Definition of product architecture, Modular and Integral product architecture, its types, Component standardization, Steps for establishing the architecture with example like trailer, Spanners etc 2.2 Ergonomics- definition, necessity of ergonomics in product design. Design consideration for qualitative and quantitative display, Design considerations for controls like knob, levers, handwheel, toggle switch. 2.3 Aesthetics Principles- definition, necessity of aesthetics in product design, consideration of aesthetics in product design, Aspects of Aesthetics in Product Design - form, symmetry, color, continuity, proportion, contrast, impression, surface finish | Lecture using media Model Demonstration | | 3 | TLO 3.1 State importance of Industrial design TLO 3.2 Explain term Design For Manufacturability (DFM) TLO 3.3 State necessity of Product Life Cycle TLO 3.4 Explain the procedure to determine 'Product Life Cycle' for given product. | Unit - III Industrial Design 3.1 Importance of industrial design, Industrial design process 3.2 Design for manufacturability (DFM), steps for DFM, design principles for manufacturability, Factors affect on DFM, Impact of DFM on cost, quality and Time 3.3 Product Life Cycle- definition, importance, stages of Product life cycle, examples for determining product life cycle of Motorcycle, electrical vehicle etc | Lecture Using<br>Chalk-Board<br>Lecture ueing<br>media | ## PRODUCT DESIGN AND DEVELOPMENT | PROD | DUCT DESIGN AND DEVELOPME | ENT Cou | rse Code : 315367 | |-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------| | Sr.No | Theory Learning Outcomes (TLO's)aligned to CO's. | Learning content mapped with Theory<br>Learning Outcomes (TLO's) and CO's. | Suggested<br>Learning<br>Pedagogies. | | 4 | TLO 4.1 Explain term Value engineering TLO 4.2 State procedure of Problem identification related to value engineering. TLO 4.3 State importance of QFD TLO 4.4 Explain QFD with suitable example. TLO 4.5 Draw House of Quality relationship Matrix for given product. | Unit - IV Value Engineering 4.1 Concept, Steps in value engineering, creative thinking, problem identification and value engineering job plan (VEJP). 4.2 Quality Function deployment (QFD) processneed, importance with example, symbols of QFD, voice of customer (VOC), VOC analysis, Quality QFD relationship matrix, roof ranking, Body ranking, importance of QFD 4.3 House of Quality linking customer complaints to technical requirements | Lecture Using<br>Chalk-Board<br>Case Study | | 5 | TLO 5.1 List different types of Rapid prototyping TLO 5.2 Explain working and constructions of 3-D printer. TLO 5.3 Differentiate FDM and SLA 3 - D printer TLO 5.4 Overview of Patents and IPR (Intellectual Property Right) - Importance of patent, patent rights, criteria for patent, process for filing patents. TLO 5.5 Elaborate the benefits of Patent and IPR TLO 5.6 Explain procedure for filing patent. | Unit - V Rapid Prototyping and Patent Filing 5.1 Rapid Prototyping- concepts, principles of rapid prototyping, Types of Rapid Prototyping- Proof of concept prototype, Looks like prototype, Works like prototype 5.2 3-D printer types – Fused deposition Modeling (FDM), Stereolithography (SLA), Selective Laser sintering (SLS), construction and working Comparison between different types of 3-D printer 5.3 Planning for prototyping-steps for planning for prototyping, define purpose, establish level of approximation, experimental plan, schedule for procurement, production and testing 5.4 Patents and intellectual property- Importance of patent, patent rights, criteria for patent, process for filing patents. | Lecture using<br>Chalk-Board<br>Video<br>Demonstrations | ## VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES. | Practical / Tutorial / Laboratory<br>Learning Outcome (LLO) | Sr<br>No | Laboratory Experiment / Practical Titles /<br>Tutorial Titles | Number of hrs. | Relevant<br>COs | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|----------------|-----------------| | LLO 1.1 Draw layout of Simple product evolution diagram | 1 | *Layout of simple product evolution diagram | 2 | CO1 | | LLO 2.1 Draw diagram of existing bench available in the classroom. LLO 2.2 Apply ergonomics principle to classroom bench LLO 2.3 Draw diagram of modified / developed bench using ergonomic principle. | 2 | *Development of existing Classroom<br>bench/Chair/Drawing table/Laboratory table<br>using relavant ergonomics principles. | 4 | CO2 | | LLO 3.1 Draw sketch of any component available in the laboratory LLO 3.2 Apply aesthetic principles to the development of a given product. LLO 3.3 Draw sketch of modified product | 3 | Development of product using aspects of aesthetics in product designing | 2 | CO2 | Course Code: 315367 ## PRODUCT DESIGN AND DEVELOPMENT | Practical / Tutorial / Laboratory<br>Learning Outcome (LLO) | Sr<br>No | Laboratory Experiment / Practical Titles /<br>Tutorial Titles | Number of hrs. | Relevant<br>COs | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|----------------|-------------------| | LLO 4.1 Select any simple product from Market LLO 4.2 Apply DFM principle for development of identified product as per requirement LLO 4.3 Write a report of identified product using DFM | 4 | Draw flow chart for accepting design of new product using DFM principle | 2 | CO3 | | LLO 5.1 Collect specification of bicycle using manufacturer's catalogue. LLO 5.2 Determine product life cycle of identified bicycle LLO 5.3 Draw product life cycle diagram of identified bicycle | 5 | *Determination of product life cycle of Bicycle | 2 | CO2<br>CO3 | | LLO 6.1 Draw Roof and Body of House of Quality. LLO 6.2 Prepare questionnaire for customers/users to know technical requirements. LLO 6.3 Apply principles of QFD for drawing House of Quality. LLO 6.4 Draw House of Quality diagram for given product | 6 | *Build House of Quality for steel cupboard / computer bench/ furniture available in the laboratory | 4 | CO1<br>CO4 | | LLO 7.1 Draw diagram of<br>developed product<br>LLO 7.2 Produce prototype of<br>developed product | 7 | Development of prototype of any simple object using cardboard/plywood etc | 2 | CO1<br>CO2<br>CO5 | | LLO 8.1 Draw flow chart for filing a patent using Government website | 8 | * Draw flow chart for filing patent (IPR act 2005) for given product using Government of India website. | 2 | CO5 | | LLO 9.1 Develop model using solid modeling software | 9 | Use of 3-D printer | 4 | CO1<br>CO5 | | LLO 10.1 Draw diagram of identified product LLO 10.2 Produce prototype of identified product | 10 | Development of prototype of any identified product from the market | 2 | CO1<br>CO2<br>CO5 | ## Note: Out of above suggestive LLOs - - '\*' Marked Practicals (LLOs) Are mandatory. - Minimum 80% of above list of lab experiment are to be performed. - Judicial mix of LLOs are to be performed to achieve desired outcomes. # VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING) ## Activity based on voice of customer • Prepare a brief report based on voice of customer through survey Course Code: 315367 # PRODUCT DESIGN AND DEVELOPMENT #### Note: - Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way. - The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills. - If a microproject is assigned, it is expected to be completed as a group activity. - SLA marks shall be awarded as per the continuous assessment record. - For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences. - If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations. ## VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED | Sr.No | Equipment Name with Broad Specifications | Relevant LLO<br>Number | |-------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------| | 1 | 3 D printer (FDM)- size- 200x200x250 mm, layer resolution 0.08 mmto 0.4 mm,print speed 40-120 mm/sec,Nozzle size 0.4mm,Filament- ABS/PLA/Composit | 12,13 | | 2 | Computer systems and peripherials-2GB RAM,CPU1GHz,Disk Space-1.2 GB for 64 bit platform,OS ,minimum .single core ,Graphic card, sound card | All | | 3 | Solid Modeling software such as Creo, Solid Edge, Solid works or equivalent | All | # IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table) | Sr.No | Unit | Unit Title | Aligned<br>COs | Learning<br>Hours | R-<br>Level | U-<br>Level | A-<br>Level | Total<br>Marks | |---------------------------------------------|-------------------------|---------------------|----------------|-------------------|-------------|-------------|-------------|----------------| | 1 | I | Product Development | CO1 | 9 | 4 | 4 | 8 | 16 | | 2 | II Product Architecture | | CO2 | 6 | 2 | 4 | 6 | 12 | | 3 | III | Industrial Design | CO3 | 9 | 4 | 4 | 8 | 16 | | 4 | IV | Value Engineering | CO4 | 10 | 4 | 4 | 8 | 16 | | 5 V Rapid Prototyping and Patent Filing CO5 | | | | 6 | 2 | 2 | 6 | 10 | | | | Grand Total | 40 | 16 | 18 | 36 | 70 | | ## X. ASSESSMENT METHODOLOGIES/TOOLS ### Formative assessment (Assessment for Learning) Mid term tests Rubrics for COs Assignment, Self-learning and Terms work Seminar/Presentation ## **Summative Assessment (Assessment of Learning)** • End of Term Examination Viva-voce Lab. performance #### XI. SUGGESTED COS - POS MATRIX FORM ## PRODUCT DESIGN AND DEVELOPMENT | PRODUC | T DESIGN A | AND DE | VELOPMEN | T | | | Course | Code | : 3153 | 367 | |---------|----------------------------------------------------------|-----------------------------|------------------------------------------------|------------------------------|------------------------------------------------------------------------|------------|----------------------------------|---------|----------------------------------|-----------| | | ħ. | | Progra | amme Outco | mes (POs) | | | S<br>Ou | ogram<br>pecifi<br>itcom<br>PSOs | ic<br>es* | | (COs) | PO-1 Basic<br>and<br>Discipline<br>Specific<br>Knowledge | PO-2<br>Problem<br>Analysis | PO-3<br>Design/<br>Development<br>of Solutions | PO-4<br>Engineering<br>Tools | PO-5 Engineering Practices for Society, Sustainability and Environment | Management | PO-7<br>Life<br>Long<br>Learning | 1 | PSO-<br>2 | PSO- | | CO1 | 105 L | 2 | 3 | - | 2 | 2 | 3 | -61 | | - 1 | | CO2 | | - | 3 | - | 2 | 3 | 3 | W | | | | CO3 | | 2 | - | - | 2 | 2 | 3 | 76 | | | | CO4 | -11 | 2 | 2 | - | - | 3 | 3 | | | 1 | | CO5 | | \ -III | - | 2 | 2 | 3 | 3 | | | | | Legends | - High:03, N | /ledium:02 | 2,Low:01, No | Mapping: - | | | / | | 7 | / | ## XII. SUGGESTED LEARNING MATERIALS / BOOKS | Sr.No | Author | Title | Publisher with ISBN Number | |-------|---------------------------|----------------------------------|-------------------------------------------------------------------------------| | 1 | K.T.Ulrich | Product Design and Development | 6th edition, McGrawhill Publication, 2023 ISBN 9780071086950 | | 2 | A.K.Chitale,<br>R.C.Gupta | Product Design and Manufacturing | 7th edition, PHI publication 2023, ISBN-13-978-<br>9391818722 | | 3 | Richard Morris | Fundamentals of Product Design | 2nd edition,2023, Bloomsbury Visual Arts Publication, ISBN 13- 978-1350398856 | | 4 | M.M.Soreas | Ergonomics in Design | 1st edition,2016 CRC Press Publication, ISBN13- 978-0367356903 | ## XIII. LEARNING WEBSITES & PORTALS | Sr.No | Link / Portal | Description | |-------|--------------------------------------------------------|----------------------------------------------------| | 1 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL lecture on product design steps and analysis | | 2 | https://www.youtube.com/watch?v=mqC4Wn_OK-I | Value engineering | | 3 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL Lecture on Ergonomics for Product Design | | 4 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL Lecture on QFD | | 5 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL Lecture on Functional Analysis<br>Technique | | 6 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL Lecture on Rapid Prototyping | | 7 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL Lecture on Rapid Prototyping Processes | | 8 | https://www.youtube.com/watch?v=dYPW5Rlwn8g | Working of 3 D printer | | 9 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL lecture on product life cycle | | 10 | https://www.youtube.com/watch?v=X1KONQw02H8 | Quality of House | | 11 | https://www.youtube.com/watch?v=Lo-AFCv2ggE | Product design and development | | 12 | https://onlinecourses.nptel.ac.in/noc21_me83/preview | NPTEL lecture on product design and development | | 13 | https://www.youtube.com/watch?v=iRMsd-X_e-0 | QFD Analysis | | 14 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL Lecture on VEJP | | 15 | https://archive.nptel.ac.in/courses/112/107/112107217/ | NPTEL lecture on Value engineering<br>Concepts | <sup>\*</sup>PSOs are to be formulated at institute level | PRODUCT DESIGN AND DEVELOPMENT | Course | Code: 3 | ł | |----------------------------------|--------|---------|---| | I NODUCI DESIGN AND DEVELOI MENT | Course | Coue | J | | PRODUCT DESIGN | N AND DEVELOPMENT | Course Code: 315367 | |----------------|-------------------|---------------------| | Sr.No | Link / Portal | Description | ## Note: • Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students MSBTE Approval Dt. 24/02/2025 Semester - 5, K Scheme